Discovery of a Cushing’s syndrome protein kinase A mutant that biases signaling through type I AKAPs | Science Advances
Abstract
Adrenal Cushing’s syndrome is a disease of cortisol hypersecretion often caused by mutations in protein kinase A catalytic subunit (PKAc). Using a personalized medicine screening platform, we discovered a Cushing’s driver mutation, PKAc-W196G, in ~20% of patient samples analyzed. Proximity proteomics and photokinetic imaging reveal that PKAc
W196G
is unexpectedly distinct from other described Cushing’s variants, exhibiting retained association with type I regulatory subunits (RI) and their corresponding A kinase anchoring proteins (AKAPs). Molecular dynamics simulations predict that substitution of tryptophan-196 with glycine creates a 653–cubic angstrom cleft between the catalytic core of PKAc
W196G
and type II regulatory subunits (RII), but only a 395–cubic angstrom cleft with RI. Endocrine measurements show that overexpression of RIα or redistribution of PKAc
W196G
via AKAP recruitment counteracts stress hormone overproduction. We conclude that a W196G mutation in the kinase catalytic core skews R subunit selectivity and biases AKAP association to drive Cushing’s syndrome.