by Aastha Vatsyayan, Mukesh Kumar, Bhaskar Jyoti Saikia, Vinod Scaria, Binukumar B. K.
Background
Advances in Next Generation Sequencing have made rapid variant discovery and detection widely accessible. To facilitate a better understanding of the nature of these variants, American College of Medical Genetics and Genomics and the Association of Molecular Pathologists (ACMG-AMP) have issued a set of guidelines for variant classification. However, given the vast number of variants associated with any disorder, it is impossible to manually apply these guidelines to all known variants. Machine learning methodologies offer a rapid way to classify large numbers of variants, as well as variants of uncertain significance as either pathogenic or benign. Here we classify ATP7B genetic variants by employing ML and AI algorithms trained on our well-annotated WilsonGen dataset.
Methods
We have trained and validated two algorithms: TabNet and XGBoost on a high-confidence dataset of manually annotated, ACMG & AMP classified variants of the ATP7B gene associated with Wilson’s Disease.
Results
Using an independent validation dataset of ACMG & AMP classified variants, as well as a patient set of functionally validated variants, we showed how both algorithms perform and can be used to classify large numbers of variants in clinical as well as research settings.
Conclusion
We have created a ready to deploy tool, that can classify variants linked with Wilson’s disease as pathogenic or benign, which can be utilized by both clinicians and researchers to better understand the disease through the nature of genetic variants associated with it.
Профессиональные бои состоятся в Нижнем Новгороде 9 августа
Велоспорт для всех: начни вместе с ENERGY
«Ты будешь моей…»: Николай Ерусланкин из Нижнего Новгорода удивил всех участников шоу «Погоня» на ТНТ
«Детям полезно принимать участие в любой движухе, связанной с творчеством, музыкой и спортом!» В Москве завершился Международный фест-форум «Голоса Мира» 2025
Алтайский край оказался одним из антилидеров по качеству автодорог
Коми, Камчатку, Архангельскую, Иркутскую, Калужскую, Костромскую, Курскую, Свердловскую и Оренбургскую области эксперты отнесли к регионам, где на осенних выборах "протестный потенциал выше среднего", говорится в докладе...
Защищённый планшет промышленного класса Saotron RT-W11
Амурская область оказалась в числе аутсайдеров по качеству дорог